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APPLICATION OF FUZZY RELATION EQUATIONS TO ASSESSMENT OF ANALOGICAL PROBLEM SOLVING SKILLS 
 
Abstract. Analogical reasoning is a very important part of the human cognition in general for creativity and scientific 

discovery and in particular it is a very useful method for solving mathematical problems by retrieving from the memory similar 
problems solved in the past and adapting their solutions for use with the target problem.  On the other hand, the student 
assessment is an essential task of Education, because, apart of being a social need and demand, it helps the instructors in designing 
their future plans for a more effective teaching procedure. However, frequently an instructor is not sure about the exact grade 
corresponding to each student’s performance. Therefore, the student assessment is characterized by a degree of vagueness and/or 
uncertainty. Consequently, fuzzy logic, due to its property of characterizing the ambiguous real life situations with multiple values, 
becomes a reach resource of assessment techniques to be applied in such vague cases. In this work fuzzy relation equations are 
used as a tool for evaluating student analogical problem solving skills. The fuzzy relation equations are obtained by the 
composition of binary fuzzy relations, which are fuzzy sets defined on the Cartesian product of two crisp sets. The compositions of 
binary fuzzy relations are conveniently performed in terms of the membership matrices of them. The same elements of the 
membership matrices are used in these compositions as would be used in the regular multiplication of matrices, but the product 
and sum operations are here replaced with the min and max operations respectively. The notion of fuzzy relation equations was 
first proposed by Sanchez in 1976 and later was further investigated by other researchers.  A classroom application and other 
suitable examples are also presented in this article illustrating our results. Further, the present work is connected to our earlier 
research efforts on utilizing several other fuzzy Logic techniques as tools for the assessment of the student performance.  

Keywords: Fuzzy Sets (FS), Fuzzy Binary Relations (FBR), Fuzzy Relation Equations (FRE), Analogical Reasoning (AR), 
Analogical Problem Solving (APS), Student Assessment.  

 
Problem formulation. The student assessment is a very important task of Education, because apart of being a social need 

and demand it helps the instructors in designing their future plans for a more effective teaching procedure. When the student 
performance is evaluated by numerical scores, the traditional method to assess the mean performance of a student class is the 
calculation of the average of those scores. However, either for reasons of more elasticity or to comfort the teacher’s existing 
uncertainty about the exact value of the numerical scores corresponding to each student’s performance, frequently in practice 
the assessment is made not by numerical scores but by linguistic grades, like excellent, very good, good, etc. This involves a 
degree of vagueness and makes the calculation of the mean value of grades impossible.  

A popular in such cases method for evaluating the overall performance of a student class is the calculation of the Grade 
Point Average (GPA) index (e.g. see [19], Chapter 6, p.125). GPA is a weighted average in which greater coefficients (weights) are 
assigned to the higher grades, which means that it reflects not the mean, but the quality performance of a student class. 

In an effort to evaluate the mean student performance in such vague assessment cases, we have used in earlier works 
tools from Fuzzy Logic. More explicitly, representing a student class as a fuzzy set in the set of the linguistic grades assessing the 
student performance, we calculated the existing in it probabilistic or possibilistic uncertainty (e.g. Chapter 5 of [19]). This 
approach is based on the classical principle of Information Theory that the greater is the reduction of the existing uncertainty 
following a student activity (e.g. test, problem-solving, learning a new subject matter, etc.), the more the new information 
obtained by the class and therefore the better its performance. However, this method has two disadvantages: First it involves 
laborious calculations and second it can be used for comparing the mean performance of two different classes only under the 
assumption that they have been proved to have equivalent skills before the corresponding activity, a condition that frequently 
does not hold in practice.  

Motivated by those disadvantages, we have used in later works Triangular or Trapezoidal Fuzzy Numbers for assessing 
the student mean performance (e.g. see Chapter 7 of [19]), a method that has been proved to be simpler and more accurate than 
the calculation of the uncertainty. 
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 On the other hand, Subbotin et al. [12], based on a fuzzy model that we had developed in an earlier work for studying 
the process of learning a subject matter in the classroom [17], they properly adapted the popular in fuzzy mathematics Centre of 
Gravity defuzzification technique for evaluating the student quality performance. This model was later named as the Rectangular 
Fuzzy Assessment Model, while Subbotin and his collaborators developed also several variations of it by changing the shape of 
the graph of the corresponding membership function (e.g. see [13-16], Chapter 6 of [19], etc.) 

Here a new approach will be developed involving the use of Fuzzy Relation Equations (FRE) for evaluating the student 
Analogical Reasoning (AR) skills for solving mathematical problems. The rest of the paper is formulated as follows: A brief 
account about the AR process is given in the second section. The third section contains the background from Fuzzy Binary 
Relations (FBR) and FRE which is necessary for the understanding of the paper. In the fourth section the model that uses FRE for 
studying the process of Analogical Problem Solving (APS) is developed, whereas in the fifth section a classroom application and 
other suitable examples are presented illustrating our new assessment model. Finally, the sixth section is devoted to our 
conclusion and to some hints for future research on the subject, whereas the problems used in our classroom application are 
exposed in the Appendix at the end of the paper. 

Analogical reasoning. Analogies are used for explaining concepts which cannot directly perceived (e.g. electricity in terms 
of the water flow), in making predictions within domains, in communication and persuasion, etc. AR is a method of processing 
information that compares the similarities between new and past understood concepts, then using these similarities to gain 
understanding of the new concept. AR is important in general for creativity and scientific discovery. Within cognitive science 
mental processes are likened to computer programs (e.g. neural networks) and such analogies serve as mental models to support 
reasoning in new domains [4].  

APS is the main mechanism of AR: When the solver is not sure of the appropriate procedure to solve a given problem 
(target problem), a good hint would be to look for a similar problem solved in the past (source problem) and then try to adapt 
the solution procedure of this problem for use with the target problem. However this strategy can be difficult to implement in 
problem solving, because it requires the solver to attend to information other than the problem to be solved. Thus the solver 
may come up empty-handed, either because he/she has not solved any similar problems in past, or because he/she fails to realize 
the relevance of previous problems. But, even if an analogue is retrieved, the solver must know how to use it to determine the 
solution procedure for the target problem.  

Several studies ([2, 3, 6, 9, 18], etc.) have provided detailed models for the AR process based on APS, in which factors 
associated with instances of successful transfer of knowledge are identified. According to these studies the main steps involved 
in APS include: 

 S1: Representation of the target problem.  

 S2: Search-retrieval of a source problem  

 S3: Mapping of the representations of the target and the source problem. 

 S4: Adaptation of the solution of the source problem for use with the target problem.  
More explicitly, before solvers working on a problem they usually construct a representation of it. A good representation 

must include both the surface and the structural (abstract, solution relevant) features of the problem. The former are mainly 
determined by what are the quantities involved in the problem and the latter by how these quantities are related to each other. 
The features included in solver representations of the target problem are used as retrieval cues for a source problem in memory. 
When the two problems share structural (solution relevant) but not surface features the source is called a remote analogue of 
the target problem. Analogical mapping requires aligning the two situations, i.e. finding the correspondences between the 
representations of the target and the source problem, and projecting inferences from the source to the target. Once the common 
alignment and the candidate inferences have been discovered the analogy is evaluated. The last step involves the adaptation of 
the solution of the analogous problem for use with the target problem, where the correspondences between objects and relations 
of the two problems must be used. 

The successful completion of the above process is referred as positive AR. But the search may also yield distracting 
problems sharing surface but not structural common features with the target problem and therefore being only superficially 
similar to it. Usually the reason for this is a non satisfactory representation of the target problem, containing only its salient 
surface features, and the resulting consequences on the retrieval cues available for the search process. When a distracting 
problem is considered as an analogue of the target, we speak about negative AR. This happens if a distracting problem is retrieved 
as a source problem and the solver fails, through the mapping of the representations of the source and target problem, to realize 
that the source cannot be considered as an analogue to the target problem.  

Fuzzy relation equations. Let U be the universal set of the discourse. It is recalled that a Fuzzy Set (FS) A in U is a set of 
ordered pairs of the form  

A = {(x, m(x)): x U}, 

where m: U  [0, 1] is the membership function defining A. The value m(x) is called the membership degree of x in A. The closer 

is m(x) to 1, the better x satisfies the characteristic property of A. For example, if A is the FS of the old people of a city and  
m(x) = 0.7, then x is a rather old inhabitant of the city, etc. For general facts on fuzzy sets we refer to the book [8].  

Definition 1: Let X, Y be two crisp sets. Then a FBR R(X, Y) is a FS on the Cartesian product X x Y of the form:  
R(X, Y) = {(r, mR(r): r = (x, y)   X x Y}, 

where mR : X x Y  [0, 1] is the corresponding membership function. 

When X = {x1,………,xn} and Y = {y1,……, ym}, then a FBR R(X, Y) can be represented by a n X m matrix of the form: 
                                                                                 y1………………..ym  
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where rij = mR (xi, yj), with i = 1,…, n and j =1,…, m. The matrix R is called the membership matrix of the fuzzy relation R(X, Y). 
The basic ideas of fuzzy relations, which were introduced by Zadeh [20] and were further investigated by other 

researchers, are extensively covered in the book [7]. 
Definition 2: Consider two FBR P(X, Y) and Q(Y, Z) with a common set Y. Then, the standard composition of these relations, 

which is denoted by  
P(X, Y)  Q(Y, Z) produces a FBR R(X, Z) with membership function mR defined by:  

 mR(xi, zj) = 
y Y

Max


min [mP(xi, y) , mQ(y, zj)],  (1) 

for all i=1,…,n and all j=1,…,m. This composition is usually referred as max-min composition. 
Compositions of FBR are conveniently performed in terms of the membership matrices of them. In fact, if P = [pik] and 

Q=[qkj] are the membership matrices of the FBR P(X, Y) and Q(Y, Z) respectively, then by relation (1) we get that the membership 
matrix of R(X, Y) = P(X, Y)  Q(Y, Z) is the matrix R = [rij], with  

 rij = min( , )ik kj
k

Max p q   (2) 

Example 1: 

                y1          y2         y3                                        z1         z2          z3         z4  

If P = 1

2
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 and Q = 
1

2

2

y 0.2 0.7 0 0.4

y 0.8 0.1 0.5 0.6

y 1 0.3 0.2 0.9

 
 
 
 
 

 are the membership matrices of P(X, Y) and Q(Y, Z) respectively, 

then by relation (2) the membership matrix of R(X, Z) is the matrix 
                                                                                               z1          z2          z3          z4 

R= P  Q = 1
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Observe that the same elements of P and Q are used in the calculation of mR as would be used in the regular multiplication 
of matrices, but the product and sum operations are here replaced with the min and max operations respectively.  

Definition 3: Consider the FBR P(X, Y), Q(Y, Z) and R(X, Z), defined on the sets, X = {xi : i Nn} , Y = {yj : j Nm }, Z= {zk : k 
Ns}, where Nt = {1,2,…,t}, for t = n, m, k, and let P=[pij], Q=[qjk] and R=[rik] be the membership matrices of P(X, Y), Q(Y, Z) and R(X, 
Z) respectively. Assume that the above three relations constrain each other in such a way that  
 P  Q = R,  (3) 
where   denotes the max-min composition. This means that  

 ax
j J

M


 
min (p ij , q jk ) = rik, (4) 

for each i in Nn and each k in Ns. Therefore the matrix equation (3) encompasses nXs simultaneous equations of the form (4). 
When two of the components in each of the equations (4) are given and one is unknown, these equations are referred as FRE. 

The notion of FRE was first proposed by Sanchez [11] and later was further investigated by other researchers [1, 5, 10]. 
A study of AR skills using FRE. Let us consider the crisp sets X = {M},  
Y = {A, B, C, D, F} and Z = {S1, S2, S3, S4}, where M denotes the imaginary notion of the average student of a class,  

A = Excellent, B = Very Good, C = Good, D = Fair and F = Failed are the linguistic grades used for the assessment of the student 
performance and Si, i = 1, 2, 3, 4 are the steps of the APS process. 

Further, let n be the total number of students of a certain class and let ni be the numbers of students who obtained the 
grade i assessing their performance, i  Y. Then one can represent the average student of the class as a FS on Y in the form 

M = {(i, in

n

): i Y}. 

The FS M induces a FBR P(X, Y) with membership matrix 

P = [ An

n

 Bn

n

 Cn

n

 Dn

n

 Fn

n

] 

In an analogous way the average student of a class can be represented as a FS on Z in the form 
M΄ = {(Sj, m(Sj): Sj Z}, 

where m: Z  [0, 1] is the corresponding membership function. In this case the FS M΄ induces a FBR R(X, Z) with membership 

matrix 
R = [m(S1) m(S2) m(S3) m(S4)]. 

We consider also the FBR Q(Y, Z) with membership matrix the 5X4 matrix  
Q = [qij], where qij = mQ(i, j) with i Y and j Z and the FRE encompassed by the matrix equation (3), i.e. by P Q = R. 
When the matrix Q is fixed and the row-matrix P is known, then the equation (3) has always a unique solution with respect 

to R, which enables the representation of the average student of a class as a FS on the set of the steps of the MM process. This 
is useful for the instructor for designing his/her future teaching plans.  

On the contrary, when the matrices Q and R are known, then the equation (3) could have no solution or could have more 
than one solution with respect to P, which makes the corresponding situation more complicated. 

A classroom application and other examples. The new assessment model presented in the previous section will be 
illustrated here with a classroom application on APS and two other examples.  

The Classroom Application: The following experiment took place at the Graduate Technological Educational Institute of 
Western Greece, in the city of Patras, with subjects a group of 60 students of the School of Technological Applications (future 
engineers) being at their first term of studies. Three mathematical problems were given for solution to students on topics of their 
first term course in mathematics. In each case and before receiving the target problem the students received two other problems 
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together with their solution procedures. They read each problem and its solution procedure and then solved the problem 
themselves using the given procedure. Subjects were allowed 10 minutes for each problem and they were not given the other 
problem until after 10 minutes had elapsed. The first of these problems was a remote analogue to the target problem, while the 
other was a distracting problem. Next the target problem was given and was asked from the students to try to solve it by adapting 
the solution of one of the previous problems (time allowed 20 minutes). The problems given to students are listed in the Appendix 
at the end of the paper. The results of the test are depicted in Table 1. 

According to those results the average student M of the class can be represented as a fuzzy set on Y = {A, B, C, D, F} by  

M = {(A, 20

60

), (B, 15

60

), (C, 7

60

), (D, 10

60

), (F, 8

60

)} 

  {(A, 0.33), (B, 0.25), (C, 0.12), (D, 0.17), (F, 0.13)} 
Thus M induces a binary fuzzy relation P(X, Y), where X = {M}, with membership matrix P = [0.33 0.25 0.12 0.17 0.13]. 

Table 1. 
Student Performance 

Grade No. Of Students 

A 20 

B 15 

C 7 

D 10 

F 8 

Total 60 

 
Also, using statistical data of the last five academic years about the APS skills of the students of the School of Technological 

Applications of the Graduate Technological Educational Institute of Western Greece, we fixed the membership matrix Q of the 
binary fuzzy relation Q(Y, Z), where Z = {S1, S2, S3, S4}, in the form:  

S1            S2      S3      S4 

Q = 

A 0.7 0.5 0.3 0

B 0.4 0.6 0.3 0.1

C 0.2 0.7 0.6 0.2

D 0.1 0.5 0.7 0.5

F 0 0.1 0.5 0.8

 
 
 
 
 
 
 
 

   

The statistical data used to form the matrix Q were collected by the instructor who was inspecting the student reactions 
during the solution of several problems in the classroom with the method of AR.. 

Next, using the max-min composition of FBR one finds that the membership matrix of R(X, Z) = P(X, Y) o Q (Y, Z) is equal 
to 

R = P o Q = [0.33 0.33 0.3 0.17]. 
Therefore the average student of the class can be expressed as a fuzzy set on Z by 

M’ = {(S1, 0.33), (S2, 0.33), (S3, 0.3), (S4, 0.17)}. 
The conclusions obtained from the above expression of M΄ are the following: 

 Only the 1

3

of the students constructed good representations of the target problems. 

 All the above students were able to retrieve source problems and almost all of them mapped the representations of 
the target and the source problems. 

 On the contrary, half of the above students failed to adapt the solution of the source for solving the target problems.  
The first conclusion was not surprising at all, since the majority of the students have the wrong habit to start studying the 

material of their courses the last month before the final exams. On the other hand, the second conclusion shows that the 
instructor’s teaching procedure of AR was in a degree successful enabling the diligent students to retrieve source problems from 
their memories and to map the representations of the target and the source problems. Finally, the last conclusion is due to the 
fact that many of those students, being inexperienced, failed through the mapping of the representations of the source and target 
problem to realize that the selected source cannot be considered as an analogue to the target problem (negative AR) Therefore, 
it is very useful for the instructor to emphasize during his/her lectures the importance of mapping for APS for controlling the 
fitness of the source problem. 

Let us now consider the case where the membership matrices Q and R are known and we want to determine the matrix 
P representing the average student of the class as a fuzzy set on Y. This is a complicated case because we may have more than 
one solution or no solution at all. The following two examples illustrate this situation: 

Example 2: Consider the membership matrices Q and R of the previous application and set P = [p1 p2 p3 p4 p5]. 
Then the matrix equation P o Q = R encompasses the following equations: 
max {min (p1 , 0.7), min (p2, 0.4), min (p3, 0.2), min (p4, 0.1), min(p5, 0)}= 0.33 
max {min (p1 , 0.5), min (p2, 0.6), min (p3, 0.7), min (p4, 0.5), min(p5, 0.1)}= 0.33 
max {min (p1 , 0.3), min (p2, 0.3), min (p3, 0.6), min (p4, 0.7), min(p5, 0.5)}= 0.3 
max {min (p1 , 0), min (p2, 0.1), min (p3, 0.2), min (p4, 0.5), min(p5, 0.8)}= 0.17 
The first of the above equations is true if, and only if, p1 = 0.33 or p2 = 0.33, values that satisfy the second and third 

equations as well. Also, the fourth equation is true if, and only if, p3 = 0.17 or p4 = 0.17 or p5 = 0.17. Therefore, any combination 



PHYSICAL & MATHEMATICAL EDUCATION    issue 1(15), 2018 
.  

126 

of values of p1, p2, p3, p4, p5 in [0, 1] such that p1 = 0.33 or p2 = 0.33 and p3 = 0.17 or p4 = 0.17 or p5 = 0.17 is a solution of  
P o Q = R. 

Let S(Q, R) = {P: P o Q = R } be the set of all solutions of P o Q = R. Then one can define a partial ordering on S(Q, R) by  

P  P΄   pi   p΄i,  ι = 1, 2, 3, 4, 5. 

It is well established that whenever S(Q, R) is a non empty set, it always contains a unique maximum solution and it may 
contain several minimal solutions [11]. It is further known that S(Q, R) is fully characterized by the maximum and minimal 
solutions in the sense that all its other elements are between the maximal and each of the minimal solutions [11]. A method of 
determining the maximal and minimal solutions of P o Q = R with respect to P has been developed in [5].  

Example 3: Let Q = [qij], i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4 be as in Example 2 and let R = [1 0.33 0.3 0.17]. Then the first 
equation encompassed by the matrix equation P o Q = R is max {min (p1 , 0.7), min (p2, 0.4), min (p3, 0.2), min (p4, 0.1), (p5, 0)}= 1. 

In this case it is easy to observe that the above equation has no solution with respect to p1, p2, p3, p4, p5, therefore  
P o Q = R has no solution with respect to P. 

In general, writing R = {r1 r2 r3 r4}, it becomes evident that we have no solution if max qij < rj . 
J 

Conclusion. In the present article we used FRE for assessing student APS skills. In this way we have managed to express 
the “average student” of a class as a FS on the set of the steps of the AR process, which gives valuable information to the instructor 
for designing his/her future teaching plans. On the contrary, we have realized that the problem of representing the “average 
student” of a class as a fuzzy set on the set of the linguistic grades characterizing his performance using FRE is complicated, since 
it may have more than one solutions or no solution at all. 

In general, the use of FRE looks as being a powerful assessment method. Therefore our future research plans on the 
subject will be oriented to the effort of using FRE for evaluating other human or computer activities (apart from AR), like learning, 
sports and spiritual games, decision-making, , case-based reasoning, etc.  

Appendix. The problems of the classroom application 
CASE 1  
Target problem: A box contains 8 balls numbered from 1 to 8. One makes three successive drawings, putting back the 

corresponding ball to the box before the next drawing. Find the probability of getting all the balls drawing out of the box different 
to each other.  

Solution: The probability is equal to the quotient of the total number of the ordered samples of 3 objects from 8 
(favourable outcomes) to the total number of the corresponding samples with replacement (possible outcomes). 

Remote analogue: How many numbers of 2 digits can be formed by using the digits from 1 to 6 and how many of them 
have their digits different? 

Solution procedure given to the students: Find the total number of the ordered samples of 2 objects from 6 with and 
without replacement respectively. 

Distracting problem: A box contains 3 white, 4 blue and 6 black balls. If we draw out 2 balls, what is the probability to be 
of the same colour? 

Solution procedure given to the students: The number of all favourable outcomes is equal to the sum of the total number 
of combinations of 3, 4 and 6 objects taken 2 at each time respectively, while the number of all possible outcomes is equal to the 
total number of combinations of 13 objects taken 2 at each time.  

CASE 2  
Target problem: Consider the matrices: 

Α = 

1

0 1

0 0 1

 



















á á

á  and Β = 

0

0 0

0 0 0

 



















á á

á  .  

Prove that An = Α + (n-1)(Β + 
2

n Β) , for every positive integer n. -  

Solution: Since Α=Ι+Β, where I stands for the unitary 3Χ3 matrix, and B3 =0, is Αn=(Ι+Β)n=Ι+nΒ+
2

)1( nn Β2 = 

=Α+(n -1)Β+
2

)1( nn Β = Α+(n-1)(Β+
2

n Β) . 

Remote analogue: Let α be a nonzero real number. Prove that αn =
n

n

i

a
i

n
)1(

0












, for all positive integers n. 

Solution procedure given to the students: Write α = 1+(α-1) and apply the Newton’s formula (x+b)n = 
iin

n

i

bx
i

n




 








0

, setting 

x=1 and b=α-1. 
Distracting problem: If A and B are as in the target problem, calculate (A+B)2. - 
Solution procedure given to the students: Operate the corresponding calculations. 
CASE 3 
 Target problem: The price of sale of a good depends upon its total demand Q and it is given by P(Q) = 1

2
Q-50, while the 

cost of production of the good is given by C(Q)= 1
4

Q2 +35Q+25. Find the quantity Q of the good’s total demand maximizing the 

profit from sale.-  
 Solution: The revenue from sale is equal to P(Q)Q and therefore the profit from sale is given by K(Q) = P(Q)Q-C(Q). The 

maximum of function K(Q) is calculated by using the derivatives. 
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 Remote analogue: A car is entering in a road having initial speed 50 Km/h, which is changed according to the relation 
U(t)=3t2-12t+50, where t represents the time (in minutes) during which the car is moving on this road. Find the minimal speed of 
the car on this road. 

 Solution procedure given to the students: Calculate the minimum of the function U(t) with the help of the derivatives. 
 Distracting problem: The price of sale of a good depends upon its total demand Q and it is given by P(Q)=25-Q2. The price 

is finally fixed to 9 monetary units and therefore the consumers who would be planning to pay more than this price benefit. Find 
the total benefit to consumers. 

 Solution procedure given to the students: For P=9 and since Q≥0, it turns out that Q=4.metric units. Drawing the graph of 

the function P(Q) (parabola) it is easy to observe that the total benefit to consumers is equal to P Q dQ( )

0

4

  - 4.9 monetary units.  
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ЗАСТОСУВАННЯ РІВНЯНЬ НЕЧІТКИХ ВІДНОШЕНЬ ДО ОЦІНКИ УМІНЬ РОЗВ’ЯЗУВАТИ АНАЛОГІЧНІ ЗАДАЧІ 

Майкл Гр. Воскоглу 
Вищий технологічний освітній інститут Західної Греції, Патрас, Греція 

Анотація. Аналогічні міркування важливі взагалі для творчості та наукового відкриття, і, зокрема, це дуже 
корисний спосіб розв`язування математичних задач шляхом знаходження у пам'яті аналогічних задач, що 
розв’язувалися в минулому, та адаптації їх розв’язань до даної задачі. З іншого боку, оцінювання студента є важливою 
задачею освіти, оскільки воно є не тільки соціальною вимогою та потребою, а й допомагає інструкторам у розробці 
майбутніх планів щодо більш ефективної методики навчання. Проте часто інструктор не впевнений у точному 
оцінюванні, яке відповідає кожному студенту. Тому оцінювання студента характеризується ступенем нечіткості та 
/ або невизначеності. Отже, нечітка логіка, обумовлені її властивістю характеризувати неоднозначні реальні 
життєві ситуації з кількома значеннями, стає доступним ресурсом оцінки, який слід застосовувати в таких 
невизначених випадках. 

У даній роботі використовуються рівняння нечітких відношень як інструмент оцінки умінь розв`язувати 
аналогічні задачі студентами. Рівняння нечіткої відношень отримуються як композиція бінарних нечітких відношень, 
які є нечіткими множинами, визначеними декартовим добутком двох чітких множин. Композиції бінарних нечітких 
відношень зручно представляти в термінах матриць їх членів. У цих композиціях використовуються ті самі елементи 
матриць членів, які будуть використовуватися при регулярному множенні матриць, проте операції добутку та суми 
замінюються тут операціями знаходження мінімума та максимума відповідно. Поняття рівнянь нечітких відношень 
було вперше запропоновано Санчесом у 1976 році, а пізніше досліджувалося і іншими дослідниками. 

Застосування на уроках та інші відповідні приклади також представлені у статті, що ілюструє результати 
автора. Також дана робота пов'язана з нашими попередніми дослідженнями з використанням декількох інших методів 
нечіткої логіки як інструментів для оцінювання студентів. 

Ключові слова: нечіткі множини, нечіткі бінарні відношення, рівняння нечітких відношень, аналогічні 
міркування, решение аналогічних задач, оценка студентов.  


