Головна » Статті

Всього матеріалів в каталозі: 788
Показано матеріалів: 366-370
Сторінки: « 1 2 ... 72 73 74 75 76 ... 157 158 »

Анотація. Логічна компетентність, що відноситься до математичних компетентностей, – це володіння дедуктивним методом доведення та спростування тверджень. Логічна компетентність є важливою складовою професійних компетентностей майбутніх лікарів, оскільки логічний підхід до формулювання клінічних висновків є невід’ємною передумовою розвитку сучасної доказової медицини, основою якої є чітко доведені клінічні судження. Саме концепція наукових доказів дозволила медицині вийти на новий сучасний рівень розвитку, з'ясувати природу більшості хвороб і підібрати ефективне лікування для багатьох пацієнтів. Якщо розглядати доведення деякого клінічного судження з точки зору логіки, воно полягає у встановленні істинності або хибності деякого твердження за допомогою дедуктивного методу. Отже, формування логічної компетентності у майбутніх медиків дозволить виховати сучасних лікарів, що працюють згідно принципів доказової медицини для сумлінного, точного й осмисленого використання кращих результатів клінічних досліджень для вибору лікування конкретного хворого.
Розвитку логічної компетентності у студентів вищих медичних навчальних закладів присвячена тема «Формальна логіка у вирішенні задач діагностики, лікування та профілактики захворювань», що вивчається в курсі медичної інформатики. На практичних заняттях студенти опановують основні поняття алгебри логіки та розвивають навички застосування їх до класичних логічних задач та до задач медичного змісту. Розв’язуючи логічні задачі, студенти розвивають логічне мислення, яке є основою логічної компетентності. Добре сформована логічна компетентність в майбутньому допоможе їм приймати правильні рішення в складних клінічних ситуаціях, що в свою чергу може зберегти здоров’я та навіть життя пацієнтів.
В даній роботі на прикладі задач медичного змісту розглядаються основні способи розв’язання логічних задач: з допомогою міркувань, згідно законів алгебри логіки, за допомогою таблиць істинності. Показано, що не дивлячись на те, що кожен з описаних способів можна застосувати до довільної задачі,  для кожної конкретної логічної задачі існує свій найкращий спосіб її розв’язання.

Annotation. Logical competence is an important component of the professional competence of future physicians, since a logical approach to the formulation of clinical conclusions is an inalienable prerequisite for the development of modern evidence-based medicine, which is based on well-documented clinical opinions. The concept of scientific evidence has allowed medicine to reach a new level of development, to find out the nature of most diseases and to find effective treatment for many patients. If we consider proof from the point of view of logic, it is establishing if the inference is certain or uncertain. Consequently, the formation of the logical competence of future physicians will enable the upbringing of modern doctors who work on the principles of evidence-based medicine for the conscientious, accurate and meaningful use of the best results of clinical trials to choose the treatment of a particular patient.
The topic "Formal logic in solving problems of diagnosis, treatment and prevention of diseases", which is studied in the course of medical informatics, is devoted to the development of logical competence among students of higher medical schools. In practical classes, students study the basic notions of Boolean algebra and develop skills of applying them to classical logical tasks and tasks with medical content. In this paper, on the example of problems of medical content, the main ways of solving logical problems are considered. They are solution with the help of considerations, solution in accordance with the laws of algebra of logic, solution using truth tables. By solving logical problems, students develop logical thinking that in the future will help them make the right decisions in difficult clinical situations, which in turn helps to save health and even the lives of patients.

Анотація. В статті розглянуто наступні типи класифікації наукових моделей у вишівському курсі фізики: класифікація моделей за типом наукової абстракції; класифікація моделей за предметом теоретичного опису; природна класифікація моделей та класифікація моделей за ступенем модельного узагальнення.
В першому випадку всі моделі можуть бути умовно розділені на абстракції ототожнення, абстракції граничного переходу та абстракції, що вводяться за означенням. Для другого випадку вирізняють моделі: фізичних систем, фізичних взаємодій, фізичних зв’язків, фізичних процесів, фізичних явищ та фізичних законів. У межах класифікації за ступенем модельного узагальнення можна виокремити фундаментальні, базисні та часткові моделі. Ми наводимо чотирнадцять дихотомічних типів фундаментальних моделей, а саме: статичні та динамічні моделі; моделі із зосередженими та розподіленими параметрами; дискретні та континуальні моделі; детерміновані та стохастичні моделі; гомогенні та гетерогенні моделі; лінійні та нелінійні моделі; періодичні та неперіодичні моделі; симетричні та асиметричні моделі; -нуль, -одно, -дво та тривимірні моделі; «жорсткі»та «м’які» моделі; монолімітні та полілімітні моделі; моноконтекстні та поліконтекстні моделі; монотипні та дуальні моделі;, дедуктивні, індуктивні та «плаваючі» моделі. Також розглянуто природну класифікацію наукових моделей в фізиці (механічні моделі, моделі теплових та електромагнітних явищ, оптичні моделі та моделі мікросистем).
Проаналізовані у даній роботі різні типи класифікації ідеальних фізичних моделей дозволяють всебічно висвітлити зміст кожної моделі, що розглядається у вишівському курсі фізики. Для кращого засвоєння студентами усього різноманіття характерних ознак таких моделей ми пропонуємо користатися технологією фреймового навчання. У роботі наведено приклади фреймування змісту двох базисних моделей –моделі матеріальної точки та моделі ідеального газу.

Abstract. The article deals with the following backgrounds of classification of the scientific models in higher physics education: the classification of models by the type of scientific abstraction; the classification of models by the subject of theoretical description; the natural classification and classification by the degree of model abstraction.
In the first case all models can be divided into the identification abstractions, the limit transition abstractions and the abstractions which are introduced by definitions. In the second one we have the models of: physical systems, physical interactions, physical constraints, physical processes, physical phenomena and physical laws. For classification by the degree of model abstraction one can distinguish the fundamental, basic and particular models. We single out fourteen types of fundamental models. These are: static and dynamic models; models with lumped and distributed in space parameters; discrete and continuous models; deterministic and stochastic models; homogeneous and heterogeneous models; linear and nonlinear models; periodic and non-periodic models; symmetric and asymmetric models; zero-, one-, two- and three-dimensional models; rigid and soft models; single-limit and multiple-limit models; monocontextual and polycontextual models; monotypic and dual models; deductive inductive and floating models. We also describe the natural classification of the scientific models in physics (mechanical models, models of thermal and electromagnetic phenomena, optical models and models of microsystems).
The different types of classification of the scientific physical models considered in this paper allow to comprehensively cover the contents of each model that is considered in higher physics education. For better understanding the variety of features of such model by students, we suggest using the frame routine strategy. As an example, we give the frame description of two basic models – the point particle and the ideal gas models.

Аннотация. В последние годы много дискутируют о преподавании математики, как в школах, так и в высшем образовании. Говорят о том, как заинтересовать математикой школьников и студентов. Одним из способов привлечь лучших учеников - пригласить их принять участие в математических олимпиадах. Олимпиады по математике в средней школе в Латвии проводятся ежегодно с 1945/46 учебного года. В течение последних 7 лет в Латвии проходит также Международная студенческая математическая олимпиада, организованная кафедрой математики Латвийского сельскохозяйственного университета в городе Елгава. Первая такая олимпиада проходила в 2011 году в рамках латвийско-литовского проекта сотрудничества «Трансграничная сеть для интеграции математических компетенций в социально-экономическое развитие региона». В этой олимпиаде принимают участие студенты Балтийских университетов. Каждый год, начиная с 2012 года, студенты Рижского Технического Университета также принимают участие в этой олимпиаде, при этом показывая хорошие результаты. Интерес к международной математической олимпиаде растет с каждым годом. Число университетов, участвующих в олимпиаде, увеличивается каждый год. В этой олимпиаде студенты не только соревнуются индивидуально, но и в группах. Группы формируются из студентов различных учебных заведений. Каждой группе необходимо решить некоторую проблему и интересным образом представить решение задачи. Студенты каждой группы также обсуждают между собой содержание и методику преподавания в своих университетах, оценивая и представляя свои предложения по улучшению качества преподавания математики. Математические олимпиады повышают интерес к математике среди молодежи и развивают совместные навыки среди единомышленников. В таких олимпиадах не только студенты получают новые идеи, но и преподаватели. Многое можно извлечь из оценки лучших студентов по анализу содержания курсов высшей математики, оценки работы преподавателей, а также предложений студентов по улучшению методов преподавания.

   Abstract. In recent years, there are active on-going discussions about the mathematics education at both schools and universities. The main subject of the discussions is attraction of pupils and students to extended mathematics studies. Encouragement to participate at Mathematics Olympiads is one of the option for motivating the best students for extended mathematics learning. The Olympiads in mathematics for secondary schools have been organized every year since 1945/1946. An International Mathematics Olympiad hosted by the Mathematics Department of the Latvia University of Agriculture has been held in Latvia for seven years already. The first such Olympiad was created in 2011 in frames of a cross-border cooperation project between Latvia – Lithuania “Cross-border cooperation net to include the competences of mathematics in the social economical development of the region”. Students from the Baltic States are not only competing individually in these Olympiads but also in groups. Groups are selected randomly, so that there are students from different educational institutions in the group. Each group has to solve some problem and to present a solution to the problem in an interesting way. Students also are discussing on the curriculum and education methods of mathematics at their universities, are evaluating and giving their proposals for the studies improvement. Interest about the Mathematics Olympiad grows every year. The number of Universities participating in the Olympiads is increasing almost every year. Also students of the Riga Technical University have been participating and winning the prizes at these Olympiads since 2012. These Mathematics Olympiads encourage interest about mathematics, facilitate socialisation and collaboration among likeminded youth and give the teaching stuff an opportunity to hear thoughts of the best students about mathematics education methods and ways of their improvement.

АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ | Переглядів: 1059 | Author: Володко И., Черняева С., Эглите И. | Download in PDF |

Анотація. В статті піднімається питання використання динамічних моделей GeoGebra на уроках математики в контексті технологій STEM-освіти. Розглядаються функціональні можливості програмного забезпечення GeoGebra в навчанні математики; пропонується STEM-підхід до використання динамічних моделей цієї програми на уроках математики; наводиться ряд практичних прикладів. Характеризується проблема вибору відповідного програмного забезпечення, яке б задовольняло цілям навчання, було б доступним, простим у використанні і, в той же час, функціональним. На наш погляд, GeoGebra є потужним і зручним інструментом для здійснення математичних досліджень. Переваги GeoGebra такі: безкоштовність; наявність онлайнових, автономних та мобільних версій програми; простий у використанні інтерфейс з потужними функціональними можливостями; дозволяє створювати авторські інтерактивні моделі у формі веб-сторінок; доступна багатьма мовами та має величезну глобальну спільноту користувачів, де ви можете поділитися досвідом та матеріалами; код програмного забезпечення відкритий. Використання інтеграції вчителем як керівного принципу STEM-освіти дозволяє модернізувати методологічні засади, зміст, обсяг навчального матеріалу, застосовувати сучасні технології під час навчання з метою розвитку компетентностей якісно нового рівня. Ми пропонуємо залучати учнів до роботи з GeoGebra з молодших класів середньої школи. Учні 5-6 класів можуть почати працювати з динамічними моделями GeoGebra. А вже в 7-му класі, коли в навчальному матеріалі з'являються перші теореми та потреба формування в учнів вмінь доводити математичні твердження, необхідно використовувати можливості комп'ютерного експерименту та доведення. Моделювання математичних об'єктів та спостереження за процесом їх динамічних змін за допомогою інтерактивних моделей програми GeoGebra дозволяють учням розвивати здатність виділяти характерні риси, встановлювати закономірності, узагальнювати і висувати гіпотези. Ми вважаємо, що кожен сучасний учитель повинен включати у свій арсенал інструменти навчання GeoGebra або аналогічні програмні ресурси.

Abstract. With the beginning of the XXI century, in the developed countries of the world, such a trend in education as STEM (Science, Technology, Engineering, Mathematics) began to gain popularity. In Ukraine, this trend has recently become popular and began to be actively implemented.
The purpose of this article is to reveal features of the use of dynamic GeoGebra models оn mathematics lessons in the context of STEM learning. In order to achieve this goal, it is necessary to perform a number of tasks, namely to consider the functionality of the GeoGebra software in teaching mathematics, to propose a STEM approach to the use of dynamic models of this software in mathematics lessons and to provide a number of practical examples.
At the moment there is a huge number of mathematical software tools and online services that can be used in math studies. Therefore, before the teacher there is a problem of choosing the appropriate software that would satisfy the objectives of the training, was accessible, a little simple and at the same time, a functional interface. In our opinion, GeoGebra is a powerful and convenient learning tool for math studies. The advantages of GeoGebra are as follows: free; availability of online, offline and mobile versions of the program; easy-to-use interface with powerful functionality; allows you to create authored interactive tutorials in the form of web pages; available in many languages and has a huge global community of users where you can share experiences and materials; open source software code. The use of integration by the teacher as a guiding principle of STEM-education allows to modernize methodological foundations, content, volume of educational material, apply modern technologies while studying in order to develop competences of a qualitatively new level, in particular, using mathematical knowledge and scientific concepts. We suggest that students be encouraged to work with GeoGebra preferably from junior high schools. Students from grades 5-6 can start working with dynamic GeoGebra models. Already in the 7th form, when the first theorems appear in the teaching material and the need to form students' ability to prove the statement, it is necessary to use the possibilities of computer experimentation and proof. Modeling of mathematical objects and observing the process of their dynamic changes with the help of interactive drawings of the GeoGebra program allow students to develop the ability to allocate characteristic features, to establish regularities, to generalize and to put forward hypotheses. We believe that every modern teacher should include GeoGebra training tools or similar software resources in their arsenal.

Анотація. У статті висвітлено головні тенденції розвитку уявлень про фізичну картину світу в учнів загальноосвітніх закладів. Показано, що вияви даних тенденцій є результатом складного багатоаспектного розвитку та становлення змісту теоретико-методологічного знання у фізиці. Уточнено сутність поняття «фізична картина світу» та розкрито її роль у розвитку науково-природничого світогляду учнівської молоді. Визначено зростаючу функціональну роль сучасних фізичних теорій у процесі формування фізичної картини світу і стрімкому розвитку науково-технічного прогресу. Окреслено прийоми та методи формування фізичної картини світу в учнів загальноосвітніх шкіл, зокрема, переваги та недоліки використання інформаційних технологій.
Розглянуто процес формування понять фізичної картини світу в учнів старшої школи, наголошено на послідовності дій вчителя, які повинні бути спрямовані на активізацію інтелектуальних можливостей учнів. Представлено провідні інтелектуальні операції у процесі формування фізичної картини світу на уроках повторення та узагальнення. Розглянуто основні аспекти формування переконань та світоглядних якостей, які визначають особисте ставлення учнів до оточуючої дійсності, а також проаналізовано основні  етапи формування переконань.
Удосконалення дидактичних можливостей мобільних пристроїв та будь-яких підручних ґаджетів обумовлює необхідність використання пристосованих для цих пристроїв матеріалів світоглядного характеру. Враховуючи стрімкий розвиток Інтернет технологій та велику різноманітність пропонованої інформації в мережі, ми наголошуємо на важливості формування в учнів критичного мислення задля уникнення хибних уявлень, які можуть сформуватися у свідомості учня під час опрацювання навчальних матеріалів світоглядного характеру, які пропонуються як на уроках фізики, так і мережевими ресурсами. Саме критичне мислення визначає наскільки швидко учень зможе оволодіти певними знаннями і ці знання будуть адекватними дійсності.

Abstract. The article highlights the main tendencies of the development of representations about the physical picture of the world in students of general educational institutions. It is shown that the revealing of these tendencies is the result of complex multidimensional development and formation of the content of theoretical and methodological knowledge in physics. The essence of the concept "physical picture of the world" was clarified and its role in the development of the scientific and natural worldview of the student youth was revealed. The growing functional role of modern physical theories in the process of forming the physical picture of the world and the rapid development of scientific and technological progress is determined. Methods and methods of forming the physical picture of the world in students of secondary schools are outlined, in particular, the advantages and disadvantages of using information technologies.
The process of forming the concepts of the physical picture of the world in the students of the senior school is considered, and the emphasis is on the sequence of actions of the teacher, which should be aimed at activating the intellectual capabilities of the students. The leading intellectual operations in the process of forming the physical picture of the world in the lessons of repetition and generalization are presented. The main aspects of formation of beliefs and ideological qualities that determine the personal attitude of students to the surrounding reality are considered, as well as the main stages of formation of beliefs are analyzed.
Improving the teaching capabilities of mobile devices and any gadget gadgets makes it necessary to use ideological materials adapted for these devices. Taking into account the rapid development of Internet technologies and the great variety of the offered information in the network, we emphasize the importance of forming critical thinking in students in order to avoid false representations that can be formed in the minds of the student during the development of educational materials of ideological nature, which are offered not only in physics classes, but and network resources. It is critical thinking that determines how quickly a student will be able to master certain knowledge and that this knowledge will be adequate to reality.

АКТУАЛЬНІ ПРОБЛЕМИ ФІЗИКИ ТА МЕТОДИКИ НАВЧАННЯ ФІЗИКИ | Переглядів: 982 | Author: Балабан Я., Іваній В., Мороз І. | Download in PDF |
« 1 2 ... 72 73 74 75 76 ... 157 158 »