Головна » Статті » АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
ПІДХОДИ ДО ПОБУДОВИ НЕПЕРЕРВНИХ Анотація. У статті розглядається встановлення зв’язків між поняттями неперервності та ніде не диференційовності, історія формування самого поняття неперервної ніде не диференційовної функції, перші спроби побудови функцій даного типу. Аналізується три основні підходи до означення неперервних ніде не диференційовних функцій: перший підхід полягає в узагальненні функції Вейєрштрасса; другий підхід є геометричним і базується на системі ітерованих функцій; третiй пiдхiд полягає у встановленні певного зв’язку мiж цифрами аргументу i цифрами вiдповiдних значень, записаних в iншiй системi числення. Розглядаються властивості неперервних дійсних функцій дійсної змінної зі складною локальною поведінкою засобами фрактального аналізу та фрактальної геометрії, зокрема дається огляд функції Ва-дер-Вардена і дослідження властивостей даної функції. Також вказана актуальність дослідження і практичність застосування неперервних ніде не дифернційовних функцій в різних математичних моделях. APPROACHES TO THE CONSTRUCTION OF CONTINUOUS NOWHERE DIFFERENTIABLE FUNCTIONS Abstract. In the article the making connections between the concepts of continuity and nowhere differentiable, the history of the formation of the concept of continuous nowhere differentiable functions, the first attempt to build functions of this type. We analyze three main approaches to the definition of continuous nowhere differentiable functions: the first approach is a generalization of Weierstrass functions; the second approach is based on geometric and iterated function system; the third approach is to establish some connection between the numbers i argument numbers corresponding values recorded in another numeration system. We consider the properties of continuous real functions of a real variable with complex behavior of local means of fractal analysis and fractal geometry, in particular, provides an overview of the Va-der-Worden’s function and study the properties of this function. Also indicated the relevance of research and practical application of continuous nowhere differentiable functions. Список використаних джерел
|
|
Додано: 27.03.2017 | Переглядів: 1350 | | |
Статті з теми: |
Всього коментарів: 0 | |