Головна » Статті » ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ В ОСВІТІ

Артемчук О.Р., Мороз М.П. МОЖЛИВОСТІ ВИКОРИСТАННЯ МОБІЛЬНИХ ДОДАТКІВ ПІД ЧАС ВИВЧЕННЯ ПЛАНІМЕТРІЇ В СЕРЕДНІЙ ШКОЛІ
Артемчук О.Р., Мороз М.П. [artemchukolena@gmail.com]
Національний педагогічний університет імені М.П. Драгоманова, Україна
Download in PDF: http://fmo-journal.fizmatsspu.sumy.ua/journals/2017-v3-13/2017_3-13-ArtemchukMoroz_Scientific_journal_F.pdf

МОЖЛИВОСТІ ВИКОРИСТАННЯ МОБІЛЬНИХ ДОДАТКІВ
ПІД ЧАС ВИВЧЕННЯ ПЛАНІМЕТРІЇ В СЕРЕДНІЙ ШКОЛІ

Анотація. Сьогодні людство активно застосовує сучасні технологічні досягнення в багатьох сферах життєдіяльності. Великий потенціал технології мають і в освіті, проте далеко не всі їхні можливості проаналізовано та застосовано. Втім ні для кого не є секретом, що завдяки програмному забезпеченню можна підняти наочність на принципово новий та якісний рівень. Дана стаття присвячена питанню унаочнення геометричних конструкцій засобами мобільних та Web-додатків під час вивчення планіметрії в середній школі. Розглянуто додатки, які у вигляді ігор-головоломок дозволяють розв’язувати різноманітні задачі на побудову безпосередньо на смартфоні (Euclidea, Pythagorea та Pythagorea60°), а також виконувати побудову динамічних геометричних конструкцій (Euclidea та Euclidea: Sketches). Детально розібрано можливості та принципи роботи цих додатків, наведено приклади задач. Проаналізовано можливості використання подібного програмного забезпечення в навчальному процесі та його роль у вирішенні різних проблем, які пов’язані з виконанням учнями рисунків до задач.

Ключові слова: геометрія, мобільні додатки, Euclidea, Pythagorea, задачі на побудову, нові освітні можливості, наочність у геометрії.

 

Opportunities of using mobile applications in studying planimetry

Olena Artemchuk, Mykola Moroz

National Pedagogical Dragomanov University, Ukraine

Abstract. The prerequisite to successful geometry studying is not only the theoretical knowledge, but also the ability to solve the geometrical tasks. It’s what distinguishes geometry from other subjects and makes impossible studying geometry only with modern information technologies. However, this problem is not fundamentally insoluble because opportunities of mobile and Web applications solve it nowadays.

Geometry is one of the school subjects for which demonstrativeness plays a key role. Almost all geometrical problems need a construction which describes in condition of the task. Some of tasks need only sketchy drawing but for another a correct and accurate drawing is a source of ideas and hypotheses on the way of solving a given problem. There are a lot of useful programs which helps easily and quickly make geometrical constructions. Some popular of them are Gran2D, Live Mathematics and GeoGebra.

One of the popular directions in recent application development is creating and spreading innovating geometrical application that provide users set of constructing exercises. For example, there are Euclidea, Pythagorea, Pythagorea60°. Each application has individual toolkit that helps make geometric constructions and set of tasks which you can solve by using it.

Unique feature of Euclidea exercises is that user needs to find wanted figure by developing one that was given at the start. It also provides exploring mode which gives user opportunity to add geometric elements at canvas and make different constructions with them. That helps find out correlations between different figures that was used in task.

Using Euclidea helps you make the process of studying planimetry more interactive and gives to it an actually new apparency. It’s possible in consequence of dynamics of constructions which is realized as an opportunity to change the shape of a given figure with all already done constructions.

A good supplement to the Euclidea game is the Euclidea: Sketches app. It was created to helps in constructing and researching various geometric constructions. You don’t need to solve a predetermined tasks like in Euclidea. For more easy and quickly construction making the functionality of this application is much wider than in Euclidea.

A fundamentally different type of task is proposed for solving in applications Pythagorea and Pythagorea60. User can only use ruler to make all constructions. Whereas background markup consists of triangle or square grid, ruler is the only tool which you need to solve tasks. Exercises asks to build “centers” of triangle, split line in given relation, construct figures that have equal areas etc. Also application provides set of geometric puzzles with points and lines.

Demonstrativeness is one of the basic means of studying. It is playing a key role while studying geometry because without visual perception of geometric constructions it is hard to imagine their structure and relations between their elements. You can fundamentally level up the demonstrativeness using modern technical and software technologies. It’s easy to make dynamic drawings using them, which allows you to track and analyze how the shapes of figure change when changing its original parameters. In turn, the game form in which the tasks in some applications are presented gives interactivity to the studying process and also can be as an extra positive incentive for students to study geometry.

Keywords: geometry, mobile applications, Euclidea, Pythagorea, geometrical construction problems, new educational opportunities, demonstrativeness in geometry.

Список використаних джерел

  1. Зеленяк О. П. Динаміка геометричних конфігурацій / О. П. Зеленяк // У світі математики. Національний університет ім. Т. Шевченка. Т. 18, вип. 1. К. : ТвіМС. 2012. С. 18-27.
  2. Зеленяк О. П. Технологія застосування середовищ динамічної геометрі / О. П. Зеленяк // Інформаційні технології і засоби навчання. – 2013. – №4 [Електронний ресурс]. – Режим доступу до журналу: http://journal.iitta.gov.ua
  3. Семеніхіна О.В., Друшляк М.Г. Обґрунтування доцільності використання програм динамічної математики як засобів комп’ютерної візуалізації математичних знань / Олена Семеніхіна, Марина Друшляк // Фізико-математична освіта. Науковий журнал. – 2015. – Випуск 3 (6). – С. 67-75.
  4. Семеніхіна О.В., Друшляк М.Г. Побудова геометричних місць точок з використанням програм динамічної математики / Олена Семеніхіна, Марина Друшляк // Фізико-математична освіта : науковий журнал. – 2016. – Випуск 1(7). – С. 127-133.
  5. Ракута В. М. Використання комп’ютерних моделей у процесі вивчення шкільного курсу планіметрії / В. М. Ракута, Вік. М. Ракута // Математика в сучасній школі. – 2013. – № 3 (138). – С. 42-47.
  6. Ракута В. М. Система динамічної математики GeoGebra як інноваційний засіб для вивчення математики / В. М. Ракута // Інформаційні технології і засоби навчання. — 2012. — No 4 (30) [Електронний ресурс]. — Режим доступу до журналу : http://www.journal.iitta.gov.ua.
  7. Rushan Ziatdinov. Dynamic geometry environments as a tool for computer modeling in thesystem of modern mathematics education. [Electronic resource] / Rushan Ziatdinov, Valery M. Rakuta. // European Journal of Contemporary Education. –2012. – № 1(1). – P. 93-100. – Accessmode: http://ejournal1.com
  8. Смирнова И.М., Смирнов В.А. Геометрия на клетчатой бумаге. – М.: Чистые пруды, 2009. – 264 с.
Розділ: ІНФОРМАЦІЙНІ ТЕХНОЛОГІЇ В ОСВІТІ
Додано: 10.11.2017 | Переглядів: 12 | Рейтинг: 4.0/1
Статті з теми:
Всього коментарів: 0
avatar