Головна » Статті » АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ

Voskoglou M. Gr. FUZZY NUMBERS AS AN ASSESSMENT TOOL IN THE APOS/ACE INSTRUCTIONAL TREATMENT FOR MATHEMATICS
Voskoglou M.
Graduate Technological Educational Institute of Western Greece, Greece
Download in PDF: http://fmo-journal.fizmatsspu.sumy.ua/journals/2016-v1-7/2016_1-7-Voskoglou_Scientific_journal_FMO.pdf

FUZZY NUMBERS AS AN ASSESSMENT TOOL IN THE APOS/ACE INSTRUCTIONAL TREATMENT FOR MATHEMATICS

Abstract. Voskoglou M. Gr. Fuzzy Numbers as an Assessment Tool in the APOS/ACE Instructional Treatment of Mathematics. In the article a combination is used of of the Triangular Fuzzy Numbers (TFNs) and the Center of Gravity (COG) defuzzification technique to assess university student skills for learning mathematics with the APOS/ACE instructional treatment.
Key words: APOS/ACE instructional treatment of mathematics, triangular fuzzy numbers (TFNs), center of gravity (COG) defuzzification technique.

Анотація. Воскоглой М. Гр. Нечіткі числа як інструмент оцінки APOS/ACE методів навчання математики. У статті використовується комбінація методів трикутних нечітких чисел (TFNs) та центру тяжіння (COG) як техніки дефазифікації для оцінки знань і навичок студентів універистету у процесі навчання математики у рамках APOS/ ACE.
Ключові слова: APOS/ACE методи навчання математики, трикутні нечіткі числа (TFNs), центр тяжіння (COG), техніка дефазифікації.

Аннотация. Воскоглой М. Гр. Нечеткие числа в качестве инструмента оценки APOS/ACE методов обучения математики. В статье используется комбинация методов треугольных нечетких чисел (TFNs) и центра тяжести (COG) как техники дефаззификации для оценки навыков и знаний студентов университета в процессе обучения математике в рамках APOS/ ACE.
Ключевые слова: APOS/ACE методы обучения математики, треугольные нечеткие числа (TFNs), центр тяжести (COG) техника дефаззификации.

References

  1. Asiala, M., et al., A framework for research and curriculum development in undergraduate mathematics education, Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1-32, 1996.
  2. Dubinsky, E. & McDonald, M. A., APOS: A constructivist theory of learning in undergraduate mathematics education research. In: D. Holton et al. (Eds.), The Teaching and learning of Mathematics at University Level: An ICMI Study, 273-280, Kluwer Academic Publishers, Dordrecht, Netherlands, 2001.
  3. Kaufmann, A. & Gupta, M., Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold Company, New York, 1991.
  4. Klir, G. J. & Folger, T. A., Fuzzy Sets, Uncertainty and Information, Prentice-Hall, London, 1988.
  5. Maharaj, A., An APOS analysis of natural science students’ understanding of derivatives, South African Journal of Education, 33(1), 19 pages, 2013.
  6. Piaget, J., Genetic Epistemology, Columbia University Press, New York and London, 1970.
  7. Subbotin, I. Ya. Badkoobehi, H., Bilotckii, N. N., Application of fuzzy logic to learning assessment. Didactics of Mathematics: Problems and Investigations, 22, 38-41, 2004.
  8. Theodorou, J., Introduction to Fuzzy Logic, Tzolas Publications, Thessaloniki, Greece, 2010 (in Greek language).
  9. Voskoglou, M. Gr., Fuzzy Sets in Case-Based Reasoning, Fuzzy Systems and Knowledge Discovery, Vol. 6, 252-256, IEEE Computer Society, 2009.
  10. Voskoglou, M. Gr., Stochastic and fuzzy models in Mathematics Education, Artificial Intelligence and Management, Lambert Academic Publishing, Saarbrucken, Germany, 2011.
  11. Voskoglou, M. Gr., Problem solving, fuzzy logic and computational thinking, Egyptian Computer Science Journal, 37(1), 131-145, 2013.
  12. Voskoglou, M. Gr., An application of the APOS/ACE approach in teaching the irrational numbers, Journal of Mathematical Sciences and Mathematics Education, 8(1), 30-47, 2013.
  13. Voskoglou, M. Gr., Fuzzy Logic in the APOS/ACE Instructional Treatment of Mathematics, American Journal of Educational Research, 3(3), 330-339, 2015.
  14. Voskoglou, M. Gr., Using the Triangular Fuzzy Numbers for the Verification of a Chosen Decision, Academic Journal of Applied Mathematical Sciences, 1(1), 1-8, 2015.
  15. Voskoglou, M. Gr., Use of the Triangular Fuzzy Numbers for Student Assessment, American Journal of Applied Mathematics and Statistics, 3(4), 146-150, 2015
  16. Voskoglou, M. Gr. & Subbotin, I. Ya., Fuzzy Numbers: A Tool for the Assessment of Human Skills, International Journal of Applications of Fuzzy Sets and Artificial Intelligence, 6, 17-32, 2016
  17. Weller, K. et al., Students performance and attitudes in courses based on APOS theory and the ACE teaching cycle. In: A. Selden et al. (Eds.), Research in collegiate mathematics education V (pp. 97-181), Providence, RI: American Mathematical Society, 2003.
  18. Weller, K. , Arnon, I & Dubinski, E. , Pre-service Teachers’ Understanding of the Relation Between a Fraction or Integer and Its Decimal Expansion, Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28, 2009.
  19. Weller, K., Arnon, I & Dubinski, E., Pre-service Teachers’ Understanding of the Relation Between a Fraction or Integer and Its Decimal Expansion: Strength and Stability of Belief, Canadian Journal of Science, Mathematics and Technology Education, 11(2), 129-159, 2011.
  20. Zadeh, L. A., Fuzzy Sets, Information and Control, 8, 338-353, 1965.
Розділ: АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ
Додано: 05.04.2016 | Переглядів: 146 | Рейтинг: 3.0/1
Статті з теми:
Всього коментарів: 0
avatar