📑 Download in PDF
ПРОБЛЕМА ПРОГНОЗУВАННЯ Анотація. Абрамчук В.С., Абрамчук І.В., Петрук Д.О., Пугач О.С., Юзва А.П. Проблема прогнозування в задачах математичного моделювання. У статті описаний двоточковий і триточковий метод позіноміальної інтерполяції для інтегрування погано зумовлених функцій, визначення ступення ризику. Розроблено теорію позіноміальної інтерполяції неперервних або дискретнх функцій. Обгрунтовано умови існування інтерполяційних позіномів. Продемонстровано застосовуваність позіноміальних многочленів. Знайшли умови існування Лагранжевого типу позіному на сітці . Дійшли до висновку, що для єдності позінома багатьох змінних необхідно обмежити умови задання функції, що інтерполюється. Анотация. Абрамчук В.С., Абрамчук И.В., Петрук Д.О., Пугач Е.С., Юзва А.П. Проблема прогнозирования в задачах математического моделирования. В статье описан двухточечный и трехточечный метод позиномиальной интерполяции для интегрирования плохо обусловленных функций, определения степени риска. Разработана теория позиномиальной интерполяции непрерывных или дискретнх функций. Обоснованно условия существования интерполяционных позиномов. Продемонстрировано применимость позиномиальних многочленов. Нашли условия существования Лагранжевого типа позинома на сетке. Пришли к выводу, что для единства полинома многих переменных необходимо ограничить условия задания интерполированной функции. Abstract. Abramchuk V.S., Abramchuk I.V., Petruk D.O., Puhach O.S., Yuzva A.P. The problem of forecasting in tasks of mathematical modeling. This article describes the two-point and three-point interpolation method for integrating pozinomialnoy ill-conditioned function, determine the degree of risk. The theory of interpolation of continuous or pozinomialnoy diskretnh functions. Reasonably conditions for the existence of interpolation pozinomov. It demonstrated the applicability pozinomialnih polynomials. They found the conditions of existence of Lagrangian type pozinoma on the grid. Concluded that the unity of a polynomial in several variables necessary to limit the terms of the job interpolated function. Список використаних джерел 1. Абрамчук В.С. Наближене інтегрування жорстких задач / В. С. Абрамчук, І. В. Абрамчук // Матиматичне та комп’ютерне моделювання. Серія: Фізико-математичні науки. – Кам’янець-Подільський національний університет, 2012. – №7. – 292 с. / С. 3-17. _x_Polus1 ПРОБЛЕМА ПРОГНОЗУВАННЯ В ЗАДАЧАХ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ_x_Polus2 Абрамчук В.С._x_Polus3 _x_Polus4 _x_Polus5 2(8)_x_Polus6 9_x_Polus7 16_x_Polus8 2016/06/07_x_Polus9 Source: Вінницький державний педагогічний університет ім. М. Коцюбинського, Україна | |
| |
Views: 1497 | | |
Total comments: 0 | |