Головна » Статті » АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ

У категорії матеріалів: 152
Показано матеріалів: 1-5
Сторінки: 1 2 3 ... 30 31 »

Сортувати за: Даті · Назві · Рейтингу · Коментарям · Переглядам

Анотація. Впровадження сучасних інформаційних комп’ютерних технологій в освіті характеризується величезним потенціалом і різноманітністю напрямків. Одним з найбільш нагальних і найбільш розвинених на даний момент є напрямок, пов’язаний із застосуванням у навчальному процесі закладів вищої та середньої освіти засобів динамічної геометрії – програмних середовищ, які дозволяють відтворити геометричні об’єкти у віртуальному просторі і надати їм динамічну репрезентацію.
Довгий час подібні засоби виконували здебільшого демонстраційні функції, дозволяючи викладачу ілюструвати навчальний матеріал у більш наочний і доступний для розуміння спосіб. Однак сьогодні вони дедалі більше використовуються для організації виконання учнями та студентами практичних завдань та контролю засвоєних ними знань. Із розповсюдженням хмарних технологій з’явились можливості організації електронного середовища взаємодії педагогів та студентів, що дозволяє проводити контроль знань в автономному режимі із використанням засобів динамічної геометрії. Це ставить перед академічною спільнотою завдання пошуку оптимальних шляхів використання засобів динамічної геометрії на всіх стадіях навчального процесу.
У даній статті проаналізовані можливості та особливості використання програмних засобів динамічної геометрії та комп’ютерно-орієнтованих методичних систем як засобів комп’ютерної візуалізації геометричного і математичного навчального матеріалу в процесі підготовки майбутніх фахівців. Досліджені методичні прийоми для оптимального поєднання класичних методів розв’язування геометричних задач із застосуванням засобів динамічної геометрії та інформаційних технологій в навчальному процесі закладів вищої освіти.
Автори доводять, що органічне поєднання і взаємозв’язок математичного, комп’ютерного моделювання та засобів динамічної геометрії в підготовці студентів є необхідним елементом навчального процесу і дослідницької діяльності. Використання мультимедійних технологій під час вивчення навчального матеріалу, а також візуалізація наданої інформації дозволяє точним наукам повернути притаманну їм наочність, яка приховується за абстрактністю і складністю понятійного та формульного апарату. Зважаючи на це, автори вважають за доцільне включення базових навичок роботи із засобами динамічної геометрії до переліку основних професійних компетентностей майбутніх вчителів математики.

Abstract. Applying modern IT technologies in education is featured by great potential and diversity of dimensions. One of the most imminent and most sophisticated among them is a dimension developed around applying in the studying process in middle and high school of dynamic geometry tools – special software allowing to reconstruct geometric objects in virtual environment and provide them with dynamic representation.
For a long time, such tools performed mainly demonstrative functions enabling teacher to illustrate data in more visual and comprehensible mode. However, today they are broadly applied for organization of solving practical problems by students and for controlling their learning progress. Growing popularity gain special electronic supplements to existing handbooks or fully electronic handbooks where examples of solving geometric problems are given and tasks for solving are formulated in specific programme environment. With cloud technologies spreading in society, new opportunities for organizing electronic environment of interaction between tutors and students emerged allowing for autonomous control of learning progress employing dynamic geometry software. Such developments pose before the academic community a challenge of finding optimal ways of using dynamic geometry software at all stages of studying process.
This article analyzes opportunities and peculiarities of employing dynamic geometry software and computer-oriented methodic systems for visualization of geometric and, more broadly, mathematical studying material in the process of educating future specialists. It researches methodic techniques for optimal combination of classic methods of problem solving with applying dynamic geometry tools and other IT technologies in studying process of high school.
The authors argue that organic combination and interrelation of mathematic, computer modelling with dynamic geometry tools in learning mathematics is an indispensable element of studying process and research activity. Employing multimedia technologies and visualization of the learned data makes it possible to re-imbue “exact” sciences with demonstrativeness often eclipsed by abstract and complex nature of their categorial and formula apparatus.
Proceeding from these arguments the authors deem appropriate inclusion of basic skills of working with dynamic geometry software into the list of main professional competences of future mathematic teachers.

АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ | Переглядів: 67 | Author: Шаповалова Н.В., Кучменко С.М. | Download in PDF |

Анотація. Викладанню комбінаторики і формуванню комбінаторного мислення присвячено багато досліджень. Вивчалися питання методики введення основних понять комбінаторики у шкільному курсі математики. Дослідження стосувалися формуванню комбінаторних понять у молодших школярів та підлітків. Комбінаторика є основою для вивчення теорії ймовірностей, дискретної математики та інших математичних курсів. Комбінаторне мислення необхідне інженеру, програмісту, вчителю математики і багатьом іншим спеціалістам різного спрямування. Перед закладом вищої освіти постає завдання продовжити формування комбінаторного мислення, провівши діагностику його сформованості на початку вивчення згаданого розділу.

У статті обговорюються окремі методичні прийоми, що застосовуються при вивченні розділу «Комбінаторика» у навчальних закладах різного спрямування. Комбінаторні розділи математики складають основу як стохастичної лінії шкільного курсу математики, так і деяких математичних курсів вишів. При викладанні комбінаторики зручно використовувати уніфіковану схему комбінаторних структур. Обговорюються питання історії виникнення та методики використання уніфікованої схеми у шкільному курсі та у закладах вищої освіти. На початку вивчення корисно ознайомити студентів із згаданою схемою, і сформувати уміння використовувати її для розв’язування найпростіших задач. Доцільно також розробити набір компетентнісно орієнтованих або прикладних задач з урахуванням майбутньої спеціальності студентів. Подальше вивчення комбінаторики стосується спеціальних методів: методу твірних (продуктивних) функцій, методу рекурентних співвідношень та методу траєкторій. Названі методи вивчаються в курсі дискретної математики. У статті обговорюються можливості геометричної ілюстрації біномних коефіцієнтів у формуванні навичок математичного моделювання. Діагностика рівня  комбінаторного мислення та можливе коригування можуть є проблемою для окремого дослідження.

 

Abstract. Many studies are devoted to the question of teaching of combinatorics and the formation of combinatorial thinking. The questions of the methodic of introducing the basic concepts of combinatorics in the school course of mathematics were studied. The investigations were concerned to the formation of combinatorial concepts of junior pupils and adolescents. Combinatorics is the basis for the study of the probability theory, discrete mathematics and other mathematical courses. Combinatorial thinking is necessary for the engineer, programmer, mathematics teacher and many other specialists of different directions. The task for the institution of higher education faces is a continuing the formation of combinatorial thinking, having conduction a diagnosis of its formation at the beginning of the study of the mentioned section.

The article discusses some methodical techniques used in the study of the section "Combinatorics" in educational institutions of different directions. Combinatorial sections of mathematics form the basis of both the stochastic line of the school course of mathematics and some mathematical courses of higher education. When teaching combinatorics it is convenient to use a unified scheme of combinatorial structures. Issues of the history of origin and methodics of using the unified scheme in the school course and in higher education institutions are discussed. At the beginning of the study of combinatorics it is useful to familiarize students with the mentioned above scheme, and to form the ability to use it to solve the simplest tasks. It is also advisable to develop a set of competence-oriented or applied tasks, taking into account the future specialty of students. Further study of combinatorics relate to special methods: the method of generating functions, the method of recurrence relations and the method of trajectories. These methods are studied in the course of discrete mathematics. The article discusses the possibilities of geometric illustration of binomial coefficients for the formation of mathematical modeling skills. Diagnosis of the level of combinatorial thinking and possible its correction may be a problem for another investigation.

Анотація. У статті розкриваються особливості навчання математики іноземних слухачів-абітурієнтів підготовчого відділення технічного ЗВО. Визначено основні методи та форми оптимізації адаптаційного процесу слухачів-іноземців, розглядаються варіанти підвищення ефективності ліквідації академічної різниці математичної підготовки до набуття рівня готовності навчання в технічному закладі. Зазначається, що перехід від слухача-абітурієнта до студента відбувається на фоні опанування слухачами нового суспільного статусу, вищого рівня процесу соціалізації особистості в іншому соціумі, умовах іншої країни,  який неодмінно окреслює і нові обов’язки та вимоги. Звертається увага на те, що навчання за інженерно-технічним фахом іноземних слухачів підготовчого  відділення має відбуватись з  врахуванням їх готовності до творчої та науково-дослідної діяльності.
Наведено приклад складання математичного словника для слухачів – іноземців підготовчого відділення технічного ЗВО із супроводом англійською, іспанською та китайською мовами. Зазначається доцільність використання методу малих груп та індивідуального підходу до навчання під час практичних занять з математики.
Виявлена необхідність  адаптації слухачів до методів, технологій та використання засобів ІКТ в навчальному процесі, що застосовують викладачі кафедри вищої математики при викладанні її розділів. Опорний конспект  пропонується складати використовуючи навчальний посібник з курсу елементарної математики, що складений для слухачів – іноземців із поясненням ключових моментів їх рідною мовою, де наведено теоретичні відомості з тем, приклади розв’язку типових задач.  Зазначається, що після подолання слухачами мовного бар’єру можна поступово вводити задачі прикладного змісту (економічного, технічного). Підкреслюється, що важливим є розвиток створення алгоритмів розв’язку задач.

Abstract. The article reveals peculiarities of the study of mathematics of foreign students of the preparatory department of the technical university. The basic methods and forms of optimization of the adaptation process of foreign students are determined, variants of increasing the efficiency of liquidation of the academic difference of mathematical preparation to the level of readiness of studies in a technical institution are considered. It is noted that the transition from the student-applicant to the student takes place against the background of mastering the new social status, the higher level of the process of socialization of the individual in another society, the conditions of another country, which necessarily outlines new responsibilities and requirements. Attention is drawn to the fact that training in the engineering and technical profession of foreign students of the preparatory department should take place taking into account their readiness for creative and research activity.
An example of compiling a mathematical dictionary for listeners - foreigners of the preparatory department of the technical university with the accompaniment in English, Spanish and Chinese is presented. The expediency of using the method of small groups and the individual approach to learning during practical classes in mathematics is substantiated.
The necessity of adapting the students to the methods, technologies and the use of ICT tools in the educational process, which are used by the teachers of the department of higher mathematics during the teaching of its sections, is revealed. A reference summary is proposed to be compiled using a tutorial on the elementary mathematics course compiled for alumni listeners explaining the key moments in their native language, which provides theoretical information on topics, examples of solving typical problems. It is noted that after overcoming the language barrier students can gradually enter the tasks of applied content (economic, technical). It is clear that without proper understanding of the condition, it is impossible to formulate an algorithm for solving such problems, therefore the development of algorithms for solution of tasks is considered obligatory.

АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ | Переглядів: 66 | Author: Петрук В., Дубова Н., Клєопа І. | Download in PDF |

Анотація. Професійна підготовка майбутніх фахівців нині вимагає розвинених прийомів їхньої розумової діяльності. Навчання математики може забезпечити всі необхідні умови для розвитку таких прийомів. Одним із шляхів підвищення ефективності навчання математики у закладах вищої освіти вважаємо активне використання методичного інструментарію розвитку мислення майбутніх фахівців засобами навчання математики. У статті виокремлено та схарактеризовано методичні аспекти навчання математики, використання яких сприяє розвитку прийомів розумової діяльності та формуванню їхньої професійно-математичної компетентності. Зазначено, що ефективний розвивальний навчальний процес має забезпечувати активну навчально-пізнавальну діяльність студентів, зокрема: містити діалоги та дискусії, передбачати право на помилку та моделювати ситуації з провокуванням на такі помилки тощо. В процесі професійного навчання запропоновано ознайомлення майбутніх економістів з принципами, стратегіями та процедурами критичного мислення тощо. У статті рекомендовано використовувати методичний інструментарій розвитку прийомів розумової діяльності майбутніх фахівців помірковано, не перетворюючи на самоціль, не наносячи при цьому шкоди для традиційних умов засвоєння студентами навчального матеріалу. Методично виважене використання методів та засобів розвитку прийомів розумової діяльності майбутніх економістів у поєднанні з вдало підібраними математичними завданнями розглядається як ефективний шлях формування професійно-математичної компетентності студентів у процесі навчання.

Abstract. Professional training of future specialists now requires advanced techniques for their mental activity. Learning mathematics can provide all the necessary conditions for the development of such techniques. One of the ways to improve the efficiency of mathematics training in higher educational institutions is to actively use the methodical tools for developing the thinking of future specialists by means of mathematics education. The article outlines and describes the methodical aspects of teaching mathematics, the use of which contributes to the development of methods of mental activity and the formation of their professional and mathematical competence. It is noted that effective developmental learning process should provide active educational and cognitive activity of students, such as: including dialogues and discussions, predicting the right to mistake and simulating situations with provoking for such errors, etc. In the process of professional training, familiarization of future specialists with the principles, strategies and procedures of critical thinking is suggested. In the article it is recommended to use methodical tools for the development of the methods of mental activity of future specialists moderately, without causing any damage to the traditional conditions of student learning of the educational material. Use of methods and tools for the development of the methods of mental activity of future specialists in combination with successfully selected mathematical problems is considered as an effective way of forming professional and mathematical competence of students in the process of learning.

АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ | Переглядів: 57 | Author: Матяш О.І., Підліснича Н.Г. | Download in PDF |

Анотація. У статті проаналізовано проблеми підготовки учителів математики та інформатики до використання сучасних технологій навчання, зокрема, впровадження елементів STEM-навчання математики учнів у закладах середньої освіти. Основною ідеєю STEM-освіти є навчання за чотирма профільними напрямками у міждисциплінарному та прикладному спрямуваннях. Це сприяє підготовці компетентних фахівців для високотехнологічних виробництв і забезпечує високий науковий потенціал суспільства. Розглядаючи питання STEM-освіти, STEM-компетентностей, дослідили, що запровадження таких форм навчання сприяє зацікавленню учнів до вивчення математики. Тому доцільна ґрунтовна підготовка учителів математики та інформатики щодо впровадження STEM-освіти. У статті наведено приклади щодо використання таких актуальних форм навчання як «перевернутий» клас, занурення, парні та групові форми роботи; лабораторні та проектні роботи. Акцентовано увагу на використанні STEM-проектів, що сприяє творчому розвитку учнів, готує їх до вирішення проблемних ситуацій в повсякденному житті. Використання методу проектів має забезпечувати сукупність дослідницьких, пошукових, проблемних, творчих підходів. У статті обґрунтовано необхідність використання у навчанні математики систем динамічної математики, зокрема Gran та GeoGebra. Використання зазначених засобів допоможе забезпечити чіткість графіки, візуалізацію досліджуваних математичних об’єктів, виразів, ілюстрацію методів побудови. Актуальною є підготовка учителів математики та інформатики до проведення уроків робототехніки. Через реалізацію міжпредметних зв’язків учні практично застосовують теоретичні знання, краще розуміють математичні поняття. У статті проаналізовано низку дослідницьких завдань для вивчення теорії ймовірностей та математичної статистики, у тому числі для використання систем динамічної математики, для розуміння закону великих чисел.

Abstract. The article analyzes the problems of preparing teachers of mathematics and informatics for using of modern teaching technologies, in particular, the introduction of elements of STEM-teaching mathematics for pupils in secondary school. The basic idea behind STEM-education is to study in four profile directions in the interdisciplinary and applied direction. It contributes to the training of competent specialists for high-tech industries and provides the high scientific potential of society. Considering the question of STEM-education, STEM-competencies, we have reached that the introduction of such forms of learning which contributes to the interest of students in the study of mathematics. Therefore, it is advisable to thoroughly prepare teachers of mathematics and informatics on the implementation of STEM-education elements. In the article examples are given on the use of such topical forms of study as "inverted" class, immersion, pair and group forms of work; laboratory and project works. The emphasis is on the use of STEM-projects, which contributes to the creative development of students, prepares them for solving problem situations in everyday life. Use of the projects method should provide a set of research, search, problem, creative approaches. The article substantiates the necessity of using the systems of dynamic mathematics in teaching mathematics, in particular Gran and GeoGebra. Using these tools will help to ensure the clarity of graphics, visualization of the studied mathematical objects, expressions, illustration of methods of construction. Now the preparation of teachers of mathematics and computer science to carrying out lessons of robotics is relevant. Through the realization of interdisciplinary connections, pupils practically apply theoretical knowledge for better understand mathematical concepts. The article analyzed a row of research tasks for the study of the theory of probabilities and mathematical statistics, for using of systems of dynamic mathematics, and for understanding the law of large numbers.

АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ | Переглядів: 62 | Author: Крамаренко Т.Г., Пилипенко О.С. | Download in PDF |
1 2 3 ... 30 31 »