Головна » Статті » АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
У категорії матеріалів: 206 Показано матеріалів: 36-40 |
Сторінки: « 1 2 ... 6 7 8 9 10 ... 41 42 » |
Сортувати за: Дате · Названию · Рейтингу · Комментариям · Просмотрам
Формулювання проблеми. Значення апарату різноманітних збіжностей в сучасному функціональному аналізі та його багатьохзастосуваннях надзвичайно велике. Походження цих збіжностей викликано використанням в сучасній математиці різних структур: топологічних, порядкових, алгебраїчних, пов’язаних з мірою множини і т.д. Такі збіжності породжують на просторах, що розглядаються, різноманітні топології, а це дає можливість одержати результати про неперервність операторів, що є однією з основних задач сучасної математики. Важливі й збіжності породжені структурами порядку. Особливо важливі випадки, коли даний простір є решіткою, зокрема, лінійною і архімедівською. Подальшим розвитком порядкової збіжності є так звана збіжність з регулятором, яка має важливість застосування. При вивченні конкретних збіжності необхідним етапом є дослідження виконання для них аксіом класу збіжності, що дозволяє розглядати утворені топологічні структури. Часто за допомогою наявних здібностей вдається утворювати нові збіжності. Важливим інструментом одержання нових збіжностей є зіркові алгоритми. В результаті маємо різні «чисті» і «мішані» до даних збіжностей нові збіжності. Властивості збіжності з регулятором пов'язані з аксіомами класу збіжності були нами раніше вивчені. Тому необхідно продовжити це вивчення для збіжностей, зіркових по відношенню до збіжності з регулятором. Метою даного дослідження є вивчення властивостей різних типів зіркових збіжностей до збіжності з регулятором як «чистих» так і «мішаних» Formulation of the problem. The theory of various convergences, formed different structures is widely used in modern Analysis: topological, index, algebra, etc. These convergences are generated by topologies which is used for research of continuity of operators, in particular, operators of topological embedding of topological linear spaces. Important convergence is index convergence in grates, descendant the structure of order. At the study of properties of concrete convergences the axioms of class of convergence have an important value, that allows to draw conclusion about the got topological structure.Djn Important are also algorithms of receipt from this convergences of new by the so-called star algorithms. As properties of index convergence, related to the axioms of class convergences, studied, it is necessary to continue such study for star to this convergence. The purpose of this research is a study of properties of different classes of star convergences to index convergence, both «clean» and «mixed», types.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 861 |
|
Download in PDF |
|
Формулювання проблеми. В нових освітніх стандартах загальнокультурний і пізнавальний розвиток учнів проголошено як одна з основних цілей освіти. Гуманістична орієнтація сучасної освіти вимагає відповідної перебудови навчального процесу. Концепція гуманізації освіти нерозривно пов’язана з її гуманітаризацією – якщо гуманізація передбачає визнання цінності людини як особистості, то гуманітаризація забезпечує формування гуманної системи освіти. Метою статті є висвітлення проблеми гуманітаризації математичної освіти та можливих підходів до вирішення цієї проблеми в сучасному освітньому просторі. Formulation of the problem. This In the new educational standards, the general cultural and cognitive development of students is proclaimed as one of the main goals of education. The humanistic orientation of modern education requires an appropriate restructuring of the educational process. The concept of humanization of education is inextricably linked with its humanization - if humanization involves recognizing the value of man as a person, then humanization ensures the formation of a humane system of education. The purpose of the article is to highlight the problem of humanization of mathematical education and possible approaches to solving this problem in the modern educational space.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 992 |
|
Download in PDF |
|
Практика викладання математики та його науково-методичного супроводу переконливо свідчить про те, що задачі про цілу (дробову) частину дійсного числа традиційно акумулюють значний пласт навичок учнів, вимагають високої аналітичної культури, технічної винахідливості. Така тематика є актуальною складовою реалізації надважливої функціональної лінії підготовки школяра й студента, підвищення кваліфікації вчителя в питаннях застосування різноманітних властивостей функцій, вимагає навичок алгебраїчних, комбінаторних, теоретико-числових міркувань. Abstract. The practice of teaching mathematics and its scientific and methodological support convincingly evidences that the problems on the integer (fractional) part of a real number traditionally accumulate a considerable layer of students' skills, require a high analytical culture, technical ingenuity. Such topics are an actual component of the implementation of the most important functional line for a pupil and a student training, teacher training in the use of various properties of functions, requires skills of algebraic, combinatorial, number-theoretic considerations.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1659 |
|
Download in PDF |
|
Формулювання проблеми. Згідно з концепцією «Нова Українська Школа», розробленою в Україні, однією з ключових компетентностей учнів є математична компетентність, у якій чільне місце займає геометрична складова. Геометрична освіта в школі має потужні можливості для формування логічного мислення учнів, передбачає створення в учнів чітких і правильних геометричних образів, розвиток просторових уявлень, озброєння їх навичками зображення та вимірювання, що має значний вплив на інтелектуальний розвиток особистості. Formulation of the problem. According to the concept of "New Ukranian School", developed in Ukraine, one of the key competences of students is mathematical competence, in which the main space is a geometric component. Geometric education at school has a powerful capability for the formation of logical thinking of students, involves the creation of students' precise and regular geometric pattern, the development of spatial concepts, arming them with skills of drawing and measurement that has a significant impact on the intellectual development of the individual.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1149 |
|
Download in PDF |
|
Формулювання проблеми. Багатьом сучасним студентам притаманна несформованість логічної грамотності, основи якої не були закладені у них ще в середній школі. Однією з можливих причин цього явища є недостатність знань вчителя математики наукових основ шкільного курсу математики. Тому проблема формування логічної грамотності майбутніх учителів математики залишається актуальною. Formulation of the problem. Many modern students are not characterized by the formation of logical literacy, the basis of which was not laid in them even in high school. One of the possible causes of this phenomenon is the lack of math teacher’s knowledge of the scientific foundations of the school's mathematics course. Therefore, the problem of the formation of logical literacy of future math teachers is relevant.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1110 |
|
Download in PDF |
|