Головна » Статті » АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
У категорії матеріалів: 206 Показано матеріалів: 71-75 |
Сторінки: « 1 2 ... 13 14 15 16 17 ... 41 42 » |
Сортувати за: Дате · Названию · Рейтингу · Комментариям · Просмотрам
Abstract. From the origin of mathematics as an autonomous science two extreme philosophies about its orientation have been tacitly emerged: Formalism, where emphasis is given to the axiomatic foundation of the mathematical content and intuitionism, which focuses on the connection of the mathematical existence of an entity with the possibility of constructing it, thus turning the attention to problem-solving processes. Although none of the existing schools of mathematical thought, including formalism and intuitionism, have finally succeeded to find a solid framework for mathematics, most of the recent advances of this science were obtained through their disputes about the absolute mathematical truth. In particular, during the 19th and the beginning of the 20th century, the paradoxes of the set theory was the reason of an intense “war” between formalism and intuitionism, which however was extended much deeper into the mathematical thought. All these disputes created serious problems yo the sensitive area of mathematics education, the most characteristic being probably the failure of the introduction of the “New Mathematics” to the school curricula that distressed students and teachers for many years. In the present work current problems of mathematics education are investigated, such as the role of computers in the process of teaching and learning mathematics, the negligence of the Euclidean Geometry in the school curricula, the excessive emphasis given sometimes by the teachers to mathematical modeling and applications with respect to the acquisition of the mathematical content by students, etc. The future perspectives of teaching and learning mathematics at school and out of it are also discussed. The article is formulated as follows: A short introduction is attempted in the first Section to the philosophy of mathematics .The main ideas of formalism and intuitionism and their effects on the development of mathematics education are exposed in the next two Sections. The fourth Section deals with the main issues that currently occupy the interest of those working in the area of mathematics education and the article closes with the general conclusions stated in the fifth Section that mainly concern the future perspectives of mathematics education. Анотація. З появою математики як окремої науки з'явилися два підходи до філософії математики: формалізм, де акцентується аксіоматична основа математичного змісту, та інтуїціонізм, який зосереджується на зв'язку існування математичного об’єкту з можливістю його побудови, при цьому звертається увага на процеси розв’язування задач. Хоча жодній з існуючих математичних шкіл, включаючи формалізм та інтуїтивізм, не вдалося знайти міцну основу для математики, більшість останніх досягнень цієї науки отримано через їх суперечки про абсолютну математичну істину. Зокрема, протягом 19-го і початку 20-го століття парадокси теорії множин були причиною інтенсивної "війни" між формалізмом та інтуїтивізмом, яка, однак, була значно поглиблена в математичну думку. Всі ці суперечки створили серйозні проблеми у сфері сприйняття математичної освіти, найбільш характерною є, мабуть, невдача введення "нової математики" до шкільних навчальних програм, яка багато років турбували студентів та вчителів. У роботі досліджуються сучасні проблеми математичної освіти, такі як роль комп'ютерів у процесі навчання та вивчення математики, нестрогість евклідової геометрії у шкільних навчальних планах, надмірна увага, яку іноді приділяють вчителі математичному моделюванню та заявки стосовно набуття студентами математичних знань тощо. Також обговорюються майбутні перспективи навчання і вивчення математики в школі та поза нею. Стаття побудована наступним чином: коротке введення до філософії математики. Наводяться основні ідеї формалізму та інтуїціонізму, їх наслідки для розвитку математичної освіти. Далі висвітлюються основні питання, які наразі цікавлять тих, хто працює в галузі математичної освіти. Загальні висновки в основному стосуються майбутніх перспектив математичної освіти.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1195 |
|
Download in PDF |
|
Анотація. У статті проаналізовано можливості використання методу аналогії у навчанні математики для формування у школярів вмінь переносу знань і вмінь від відомого об’єкта до невідомого. Підкреслено, що велика кількість помилок учнів, які вони роблять «за аналогією», свідчить про необхідність цілеспрямованого формування в школярів знань про метод аналогії та його особливості. Abstract. The article analyzes possibilities for application of analogy method in learning mathematics to form pupils’ skills to transfer their knowledge and skills from a known object to unknown. It is highlighted, that a large number of pupils’ mistakes made “by analogy” indicates the necessity of a purposeful formation of knowledge about the method of analogy and its peculiarities among pupils.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1312 |
|
Download in PDF |
|
Анотація. У статті визначено особливості фундаментальної підготовки майбутніх учителів математики на прикладі дисциплін геометричного циклу. Вивчення дисциплін, що є складовими фундаментальної підготовки студентів, спрямоване на формування загальної математичної культури, необхідної майбутньому вчителеві математики, оволодіння комплексом математичних методів та розвиток навичок застосування їх на практиці, розгортання теоретичних основ для прикладних наукових досліджень, забезпечення зв'язку з методичною підготовкою. Abstract. The article outlines the peculiarities of the fundamental training of future mathematics teachers on the example of the disciplines of the geometric cycle. The study of disciplines that are part of the fundamental training of students is aimed at forming a general mathematical culture, a necessary future mathematics teacher, mastering the complex of mathematical methods and developing the skills of their application in practice, deploying theoretical foundations for applied research, providing communication with methodological training.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1336 |
|
Download in PDF |
|
Анотація. Стаття присвячена дослідженню та аналізу компетентнісно орієнтованих завдань у шкільних підручниках з математики на прикладі теми «Трикутники», адже найактуальнішою проблемою математичної освіти основної школи є відбір її змісту. У статті обґрунтовано актуальність компетентнісного підходу до навчання математики в школі, визначено основні теоретичні відомості з даної теми: компетентність, компетенція, компетентнісний підхід, математична компетентість. Розглянуто поняття компетентнісно орієнтовані завдання та наведено конкретні приклади компетентнісно орієнтованих завдань з даної теми відповідно до компонентів математичної компетентності. Формування математичної компетентності в учнів основної школи на уроках геометрії передбачає наступні компоненти: процедурна, логічна, технологічна, дослідницька та методологічна. Відповідно до компонентів математичної компетентності, авторами були проаналізовані завдання з теми «Трикутники» у підручниках сьомих класі таких авторів як Мерзляк А.Г., Полонський В.Б., Якір М.С.; Бевз Г.П., Бевз В.Г., Владімірова Н.Г.; Бурда М.І., Тарасенкова Н.А. та наведено порівняльні таблиці кількості завдань, які спрямовані на розвиток тієї чи іншої компоненти математичної компетентності. За результатами дослідження можна зробити висновок, що найбільшу частку завдань становлять завдання спрямовані на формування процедурної компетентності, найменшу – методологічної компетентності. А от завдань спрямованих на формування технологічної компетентності не представлено в жодному з підручників. Також були проаналізовані підручники авторів Мерзляк А.Г. Полонський В.Б., Якір М.С. з п’ятого по дев’ятий класи загальноосвітніх навчальних закладів та закладів з поглибленим вивченням математики на визначення компетентнісної орієнтації змісту підручників з теми «Трикутники». Результати дослідження наведені у порівняльних таблицях, на основі яких зроблено певні висновки. Abstract. The article is devoted to the study and analysis of competence based tasks in school mathematics textbooks on the example of the topic "Triangles", because the most topical issues of mathematical education of the main school is content selection. The article provides the relevance of the competent approach to the teaching of mathematics at school, the basic theoretical information on this topic is defined: competence, competency, competence approach, mathematical competence. The competence based tasks is considered and concrete examples of competence based tasks on this topic are given in accordance with components of mathematical competence. The formation of mathematical competence in elementary school pupils involves the following components on geometry lessons: procedural, logical, technological, research and methodological. In accordance with the components of mathematical competence, the authors analyzed the tasks on the topic "Triangles" in the seventh grade textbooks of such authors as Merzliak A.G., Polonskyi V.B., Yakir M.S.; Bevz G.P., Bevz V.G., Vladimirova N.G. .; Burda M.I., Tarasenkova N.A. and comparative tables of the tasks number directed at the development of a component of mathematical competence are given. According to the research results, it can be concluded that the greatest part of the tasks are aimed at forming procedural competence, the lowest number of tasks are aimed at methodological competence. But the tasks aimed at the formation of technological competence are not presented in any of the textbooks. Also, the textbooks of authors Merzliak A.G., Polonskyi V.B., Yakir M.S. were analyzed from the fifth to the ninth grades of comprehensive educational institutions and institutions with in-depth study of mathematics to determine the competence based textbooks contents on the topic "Triangles". The results of the study are presented in comparative tables, on the basis of which certain conclusions are made.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1660 |
|
Download in PDF |
|
Аннотация. В школьном курсе геометрии расстояние от точки Abstract. In the school course of geometry, the distance from the point A to the straight line l is defined as the length of the perpendicular dropped from the point A to the line l. And the formulas of the distance both between a point and a straight line, and between parallel straight lines are deduced already in a high school course of the analytical geometry. The straight line as a graph of a linear function is defined in the school course of algebra, where the general form of a linear function is considered as the general equation of a straight line. The tangent is determined and its equation is given in the course of algebra and the beginnings of analysis. But neither the equation of a straight line passing through given two points nor the conditions of perpendicularity of straight lines are studied in the school course of mathematics. However, these facts can be fully explained to both high school students of secondary schools and academic lyceums. At the same time, one can consider problems on the distance between curves, in particular, between a straight line and a parabola, and also between parabolas. These problems can be studied in facultative classes in mathematics with students who show increased interest in the subject.
АКТУАЛЬНІ ПРОБЛЕМИ МАТЕМАТИКИ ТА МЕТОДИКИ НАВЧАННЯ МАТЕМАТИКИ |
Переглядів: 1219 |
|
Download in PDF |
|